# Math 821, Spring 2013 

Karen Yeats
(Scribe: Wei Chen)
March, 26, 2013

What about the antipode.

## Proposition.

(a) $S\left(p_{n}\right)=-p_{n}$
(b) $S\left(e_{n}\right)=(-1)^{n} h_{n}$
(c) $S\left(h_{n}\right)=(-1)^{n} e_{n}$

Recall the fundamental involution $\omega: \Lambda \rightarrow \bigwedge: e_{n} \mapsto h_{n}, \omega \circ \omega=i d$.
Proof of Proposition.
(a) From the fact that $p_{n}$ are primitive.
(b, c) Recall from last time we had $\Delta e_{n}=\sum_{i+j=n} e_{i} \otimes e_{j}$ and $\Delta h_{n}=\sum_{i+j=n} h_{i} \otimes h_{j}$ so we also have $S * i d=$ $u \circ \epsilon=i d * S$ applied to $e_{n} . \sum_{i+j=n} S\left(e_{i}\right) e_{j}=\delta_{0, n}=\sum_{i+j=n} e_{i} S\left(e_{j}\right)$ where

$$
\delta_{i j}= \begin{cases}1 & \text { if } i=j \\ 0 & \text { if } i \neq j\end{cases}
$$

is the dirac delta function. Likewise $\sum_{i+j=n} S\left(h_{i}\right) h_{j}=\delta_{n, 0}=\sum_{i+j=n} h_{i} S\left(h_{j}\right)$. From the fundamental involution $\sum_{i+j=n}(-1)^{i} e_{i} h_{j}=\delta_{0, n}$ so by induction or independence $S\left(h_{i}\right)=(-1)^{i} e_{i}$. Then since $\omega$ is an involution, we also get $S\left(e_{i}\right)=(-1)^{i} h_{i}$.
$\operatorname{cor} S(f)=(-1)^{n} \omega(f) \forall f \in \bigwedge_{n}$.

## Robinson-Schensted Algorithm

Definition. A (standard) Young tableau of shape $\lambda, \lambda$ a partition of $n$ is a filling of the Ferrer's diagram of $\lambda$ with $\{1,2, \ldots, n\}$ and strictly increasing along rows and columns.
ex $\lambda=(4,2,1), n=7$.

| 1 | 3 | 4 | 7 |
| :--- | :--- | :--- | :--- |
| 2 | 5 |  |  |
| 6 |  |  |  |
|  |  |  |  |

## Theorem.

There is a bijection between permutations of $\{1, \ldots, n\}$ and pairs of Young tableaux of the same shape $\lambda$ where $\lambda$ is a partition of $n$. The bijection is given by an algorithm.

## Definition.

Given a tableau $T$ with distinct entries and $i$ not in $T$, then the procedure to insert $i$ into $T$ is as follows. To begin the current row is the top row of $T$.

- find the smallest $j>i$ in current row if it exists
- if no such $j$ exists put a new box at the end of the current row and put $i$ in it. STOP.
- otherwise put $i$ where $j$ was and continue with the next row down as the current row and $j$ as $i$.
ex

is the result of the procedure. Observe that the procedure terminates because each time through we go down a row, but there are only finitely many nonempty rows. So if I don't stop sooner in a finite length of time, I'll reach an empty row at which point I will necessarily arrive at bullet 2 and so terminate.


## Robinson Schensted Algorithm.

Input $\sigma$ a permutation of $\{1, \ldots, n\}$
Set $P_{0}, Q_{0}$ empty tableaux
for $i$ from 1 to $n$

- insert $\sigma(i)$ into $P_{i-1}$, call the result $P_{i}$
- $P_{i}$ differs in shape from $P_{i-1}$ in exactly one added box. Take $Q_{i-1}$ add a box in that position, put $i$ in it and call the result $Q_{i}$.
Output $P_{n}$ and $Q_{n}$.


## ex

$\overline{\text { Write }}$ the permutation in 2 -line notation

$$
L=\left(\begin{array}{lllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
5 & 7 & 2 & 8 & 6 & 1 & 4 & 3 & 9
\end{array}\right)
$$



Observe $P_{i}$ and $Q_{i}$ are always the same shape by induction. Also each time through the for loop adds a box to $P_{i}$ and $Q_{i}$ so $P_{n}, Q_{n}$ each contain $n$ boxes. Next we want to show that insertion maintains the tableau property.
In the bump case $j>i$ but the smallest such $j$ in the row so distinctness $i$ is larger than everything preceeding $j$ in the row and by choice of $j$ is smaller than everything after.
Now consider the columns in the bump case.

|  | a |  |  |
| :--- | :--- | :--- | :--- |
| $<i$ | j |  |  |
| $>j$ |  |  |  |
| $>$ |  |  |  |

Any element below $j$ is $>j$ and hence $>i$ so no problem. If we are in first row, no problem. Otherwise $i$ came from bumping in the row above. $i$ could not have been in a column to the left of $j$ because in $j$ 's row all elements to the left of $j$ are $<i$ by the above paragraph. So either $i$ was above $j$ or something $<i$ was above $j$. When it is bumped something smaller goes in its place so after that the element above $j$ is $<i$. Next consider the case when a box is added to a row. In this case the nonstrictness is maintained as no element in the row is $>j$ and elements are distinct. Consider the columns, if we're in the top row then done. Otherwise we need to make sure that there is a box above the new box and it contains something $<i$. But to have gotten to this point $i$ must have been bumped from the row above but $i$ can't have been above anything in the current row since those elements are $<i$. So either $i$ was above the new box or something
$<i$ was. But $i$ was bumped by something less than itself so after bumping something $<i$ is above the new box. So the tableau property is maintained so by induction each $P_{i}$ is a tableau. The $Q_{i}$ are also tableau since at each stage I add a new box at the end of a row or begin a new row and put a larger number in. It remains to show this is a bijection. We can do so by showing it's reversible.
ex

$$
\begin{aligned}
& P \quad Q
\end{aligned}
$$

$$
\begin{aligned}
& \text { Here's how to reverse a step give } P_{i}, Q_{i} \text {. }
\end{aligned}
$$

Find the largest element $k$ in $P_{i}$. Find the matching box in $Q_{i}$, call the entry in the box $l$. Remove $l$ from $Q_{i}$ to get $Q_{i-1}$. Uninsert $l$ from $P_{i}$ to get $P_{i-1}$. The entry which pops out is $l^{\prime}$ then $k \mapsto l^{\prime}$ in the permutation. Continuing the example


How to uninsert $j$

- remove $j$ and its box
- in the row above find the largest entry $i, i<j$ (always exist if there is a row) replace $i$ by $j$.
. now do the same in the row above with $i$ in place of $j$
When we process the top row the entry we find is the $l^{\prime}$ which pops out.
$\begin{array}{llllllllll}\text { The inverse } & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ & 6 & 8 & 3 & 7 & 1 & 5 & 2 & 4 & 9\end{array}$

| 1 | 2 | 4 | 9 |
| :--- | :--- | :--- | :--- |
| 3 | 5 |  |  |
| 6 | 7 |  |  |
| 8 |  |  |  |
|  |  |  |  |

Note $P$ and $Q$ are switched. This is true in general but requires another
construction.
One way to view a permutation is as a permutation matrix.
ex

$$
\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right) \longleftrightarrow\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 1 & 3
\end{array}\right)
$$

Permutation matrices are matrices with exactly one 1 in each row and exactly one 1 in each column and rest are 0's. Instead consider matrices with all nonnegative integer entries.
ex $\left(\begin{array}{lll}1 & 0 & 2 \\ 0 & 2 & 0 \\ 1 & 0 & 1\end{array}\right)$
Convert to a list of pairs as before: if the $(i, j)$ th entry is $k$, put $k$ copies of $\left[\begin{array}{l}i \\ j\end{array}\right]$ in the list ordered lexicographically (i.e. ordered first by top entry and among pairs with the same top entry, ordered by bottom entries). This example yields

$$
\left[\begin{array}{lllllll}
1 & 1 & 1 & 2 & 2 & 3 & 3 \\
1 & 3 & 3 & 2 & 2 & 1 & 3
\end{array}\right]
$$

Next time we'll prove

## Theorem.

There is a bijection between lists of ordered pairs of positive integers ordered lexicographically, length of list is $n$ and pairs of semistandard Young tableaux of the same shape $\lambda$ where $\lambda$ is a partition of $n$.

References. (Sketch in Reiner 2.5).

