Math 821, Spring 2013

Karen Yeats (Scribe: Wei Chen) March, 26, 2013

What about the antipode.

Proposition. (a) $S(p_n) = -p_n$ (b) $S(e_n) = (-1)^n h_n$ (c) $S(h_n) = (-1)^n e_n$ Recall the fundamental involution $\omega : \bigwedge \to \bigwedge : e_n \mapsto h_n, \ \omega \circ \omega = id$. **Proof of Proposition.**

(a) From the fact that p_n are primitive.

 $(b,c) \text{ Recall from last time we had } \Delta e_n = \sum_{i+j=n} e_i \otimes e_j \text{ and } \Delta h_n = \sum_{i+j=n} h_i \otimes h_j \text{ so we also have } S * id = u \circ \epsilon = id * S \text{ applied to } e_n. \sum_{i+j=n} S(e_i)e_j = \delta_{0,n} = \sum_{i+j=n} e_i S(e_j) \text{ where} \\ \delta_{ij} = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$

is the dirac delta function. Likewise $\sum_{i+j=n} S(h_i)h_j = \delta_{n,0} = \sum_{i+j=n} h_i S(h_j)$. From the fundamental involution

 $\sum_{i+j=n}^{i+j=n} (-1)^i e_i h_j = \delta_{0,n} \text{ so by induction or independence } S(h_i) = (-1)^i e_i.$ Then since ω is an involution, we also get $S(e_i) = (-1)^i h_i.$

0 (1) () 1

cor $S(f) = (-1)^n \omega(f) \ \forall f \in \bigwedge_n.$

Robinson-Schensted Algorithm

Definition. A (standard) Young tableau of shape λ , λ a partition of n is a filling of the Ferrer's diagram of λ with $\{1, 2, ..., n\}$ and strictly increasing along rows and columns. ex $\lambda = (4, 2, 1), n = 7$. 1 3 4 7 2 5 6

Theorem.

There is a bijection between permutations of $\{1, \ldots, n\}$ and pairs of Young tableaux of the same shape λ where λ is a partition of n. The bijection is given by an algorithm.

Definition.

Given a tableau T with distinct entries and i not in T, then the procedure to insert i into T is as follows. To begin the current row is the top row of T.

 \cdot find the smallest j > i in current row if it exists

 \cdot if no such j exists put a new box at the end of the current row and put i in it. STOP.

 \cdot otherwise put *i* where *j* was and continue with the next row down as the current row and *j* as *i*.

<u>ex</u>

$$\begin{array}{cccc} T & & \mathrm{i} \\ \hline 2 & 5 & 6 \\ \hline 7 & 8 & & \leftarrow 3 \\ \hline 2 & 3 & 6 & \\ \hline 7 & 8 & & \leftarrow 5 \\ \hline 2 & 3 & 6 & \\ \hline 5 & 8 & & \leftarrow 7 \\ \hline 2 & 3 & 6 & \\ \hline 5 & 8 & & \\ \hline 7 & & & \end{array}$$

is the result of the procedure. Observe that the procedure terminates because each time through we go down a row, but there are only finitely many nonempty rows. So if I don't stop sooner in a finite length of time, I'll reach an empty row at which point I will necessarily arrive at bullet 2 and so terminate.

Robinson Schensted Algorithm.

Input σ a permutation of $\{1, \ldots, n\}$ Set P_0 , Q_0 empty tableaux for *i* from 1 to *n* \cdot insert $\sigma(i)$ into P_{i-1} , call the result P_i $\cdot P_i$ differs in shape from P_{i-1} in exactly one added box. Take Q_{i-1} add a box in that position, put *i* in it and call the result Q_i . Output P_n and Q_n .

<u>ex</u>

Write the permutation in 2-line notation

Observe P_i and Q_i are always the same shape by induction. Also each time through the for loop adds a box to P_i and Q_i so P_n , Q_n each contain n boxes. Next we want to show that insertion maintains the tableau property.

In the bump case j > i but the smallest such j in the row so by distinctness i is larger than everything preceding j in the row and by choice of j is smaller than everything after. Now consider the columns in the bump case.

Any element below j is > j and hence > i so no problem. If we are in first row, no problem. Otherwise i came from bumping in the row above. i could not have been in a column to the left of j because in j's row all elements to the left of j are < i by the above paragraph. So either i was above j or something < i was above j. When it is bumped something smaller goes in its place so after that the element above j is < i. Next consider the case when a box is added to a row. In this case the nonstrictness is maintained as no element in the row is > j and elements are distinct. Consider the columns, if we're in the top row then done. Otherwise we need to make sure that there is a box above the new box and it contains something < i. But to have gotten to this point i must have been bumped from the row above but i can't have been above anything in the current row since those elements are < i. So either i was above the new box or something

< i was. But i was bumped by something less than itself so after bumping something < i is above the new box. So the tableau property is maintained so by induction each P_i is a tableau. The Q_i are also tableau since at each stage I add a new box at the end of a row or begin a new row and put a larger number in. It remains to show this is a bijection. We can do so by showing it's reversible.

Find the largest element k in P_i . Find the matching box in Q_i , call the entry in the box l. Remove l from Q_i to get Q_{i-1} . Uninsert l from P_i to get P_{i-1} . The entry which pops out is l' then $k \mapsto l'$ in the permutation. Continuing the example

How to uninsert j

 \cdot remove *j* and its box

 \cdot in the row above find the largest entry *i*, *i* < *j* (always exist if there is a row) replace *i* by *j*.

 $2 \ 4 \ 9$

 \cdot now do the same in the row above with *i* in place of *j*

When we process the top row the entry we find is the l' which pops out.

Note P and Q are switched. This is true in general but requires another

construction.

One way to view a permutation is as a permutation matrix.

 $\begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \longleftrightarrow \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$

Permutation matrices are matrices with exactly one 1 in each row and exactly one 1 in each column and rest are 0's. Instead consider matrices with all nonnegative integer entries.

$$\underline{\mathrm{ex}} \begin{pmatrix} 1 & 0 & 2\\ 0 & 2 & 0\\ 1 & 0 & 1 \end{pmatrix}$$

Convert to a list of pairs as before: if the (i, j)th entry is k, put k copies of $\begin{bmatrix} i \\ j \end{bmatrix}$ in the list ordered lexicographically (i.e. ordered first by top entry and among pairs with the same top entry, ordered by bottom entries). This example yields

Next time we'll prove

Theorem.

There is a bijection between lists of ordered pairs of positive integers ordered lexicographically, length of list is n and pairs of semistandard Young tableaux of the same shape λ where λ is a partition of n.

References. (Sketch in Reiner 2.5).